Super-linear Elliptic Equation for the Pucci Operator without Growth Restrictions for the Data

نویسندگان

  • MARIA J. ESTEBAN
  • ALEXANDER QUAAS
چکیده

In this paper we deal with existence and uniqueness of solution to super-linear problems for the Pucci operator: −M(Du) + |u|u = f(x) in IR, where s > 1 and f satisfies only local integrability conditions. This result is well known when, instead of the Pucci operator, the Laplacian or a divergence form operator is considered. Our existence results use the Alexandroff-Bakelman-Pucci inequality since we cannot use any variational formulation. For radially symmetric f we can prove our results under less local integrability assumptions, taking advantage of an appropriate variational formulation. We also obtain an existence result with boundary explosion in smooth domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces

The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega,  $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...

متن کامل

Existence of at least three weak solutions for a quasilinear elliptic system

In this paper, applying two theorems of Ricceri and Bonanno, we will establish the existence of three weak solutions for a quasilinear elliptic system. Indeed, we will assign a differentiable nonlinear operator to a differential equation system such that the critical points of this operator are weak solutions of the system. In this paper, applying two theorems of R...

متن کامل

Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations

In this paper, we study fully non-linear elliptic equations in nondivergence form which can be degenerate or singular when “the gradient is small”. Typical examples are either equations involving the m-Laplace operator or Bellman-Isaacs equations from stochastic control problems. We establish an Alexandroff-Bakelman-Pucci estimate and we prove a Harnack inequality for viscosity solutions of suc...

متن کامل

Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate fully non-linear elliptic equations

In this paper, we study fully non-linear elliptic equations in nondivergence form which can be degenerate when “the gradient is small”. Typical examples are either equations involving the m-Laplace operator or BellmanIsaacs equations from stochastic control problems. We establish an AlexandroffBakelman-Pucci estimate and we prove a Harnack inequality for viscosity solutions of such degenerate e...

متن کامل

A two-phase free boundary problem for a semilinear elliptic equation

In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary‎. ‎We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008